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Study Purpose of Lecture #8

o =2 — |o * In this lecture, we ask
- Who are you? - What is control
- Where are you from? engineering?
- Where are you 90|n9’> - What is feedback control
To answer those questions SYSTem?

throughout your life - HOW does PID Con‘l'r‘()”er‘

work?
CURTROUL

SYSTEMS

@\/,f : (®
T

(Figures from Internet) A RE E VE Ry WH ERE

ST100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8 (3/54)



Lecture Outline

* Control and connectivity towards Industry 4.0
» Mathematical model of a dynamic system

 Feedback control system
- Block diagram
- Examples

* Controller design
- Proportional control
- Integral control
- Derivative control
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Application of Control Systems
» Autonomous robots

 Autonomous cars &
» Quadcopters

« Self-balance
robots

« Other more
applications

(https://www.youtube.com/watch?v=fRj3404hN4I)
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Application of Control Systems
« Autonomous robots
* Autonomous cars
» Quadcopters _
+ Self-balance roboti.

* Other more
applications

(https://www.youtube.com/watch?v=tIThdr305Qo)
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Application of Control Systems
* Autonomous robots
 Autonomous cars | ’
T !m..u.."wm,.,,,,

« Quadcopters (| [l e
i il Hy,

« Other more
applications

(https://www.youtube.com/watch?v=w2itwFJCgF Q)
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Definition of Control Systems

» Other more applications
- Automatic assembly line CONTROL
- Space technology
- Power systems
- Smart transportation systems
- Missile launching systems

* What is a control system?

A control system is an interconnection of components forming a
system configuration that will provide a desired system response.
——Richard C. Dorf & Robert H. Bishop, Modern control systems
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of Control Systems

* Linear system
- Cause-effect relationship for the components
- Block diagram

________________________________________________
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of Control Systems

* Linear system
- Cause-effect relationship for the components
- Block diagram

 Open-loop control TSI neonon oo ‘:

- Control the process directly | rnput—| Process b Output

________________________________________________

__________________________________________________________________________________________

E:;;Zid—b Controller ==p Actuator =P Process . Ou’rpu’ri

__________________________________________________________________________________________

An open-loop control system uses a controller and an actuator
to obtain the desired response, without using feedback.
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of Control Systems

* Closed-loop system
- Compare actual output with desire output

——————————————————————————————————————————————————————————————————————————————————————————————————

" Desired ,
output Controller == Actuator P Process output |

Sensor

__________________________________________________________________________________________________
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of Control Systems

* Closed-loop system
- Compare actual output with desire output

——————————————————————————————————————————————————————————————————————————————————————————————————

" Desired ;
output Controller ==»| Actuator == Process output |

Sensor
Measurement output Feedback

__________________________________________________________________________________________________

- Notice the difference: error based controller
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of Control Systems

* Closed-loop system

- Compare actual output with desire output
Disturbance

—————————————————————————————————————————————————————————————————————————————————————————————————

/ . Error
. Desired Controller F=p| Actuator Process Actual
. output output
Noise!
Sensor |

Measurement output Feedback

__________________________________________________________________________________________________

- An actual system also faced with disturbance and noise
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Establishment of system model

 Start from a ndive example

- Consider a autonomous car start up and maintain a
constant speed

- Assuming:

Disturbance
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Establishment of system model

 Start from a ndive example

- Consider a autonomous car starts up and maintains a
constant speed

- Assuming:

.................

_____________

» Open-loop control Disturbance i

'/ ________________________________________________________________________________________________
" Desired Actual
output == Controller == Actuator Process > output

___________________________________________________________________________________________________
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Establishment of system model

 Start from a ndive example
- Consider a autonomous car start up and maintain a

constant speed
- Assuming:

/

.................

_____________

________________________________________________________________________________________________

/

' Desired

| Automobile =
. Speed
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Establishment of system model

___________________________________________________

 Open-loop control - r=p{ 1/10>=41 10 v
- Parameters definition S = 1 _______________ 1 ...................... g
-r: desired speed (reference)  controller  Actuator
- u: throttle angle (control variable)

- w: road grade (disturbance)
- v: actual speed (output)

- If there is no external disturbance (w=0)

v=10*u,u=1/10*r o v=r
Assuming desired speed r = 10, @
Actual speed v = 10
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Establishment of system model

__________________________________________________

- Open-loop control - = 1/10
- Parameters definition
- r: desired speed (reference)

- u: throttle angle (control variable)
-w: road grade (disturbance)
- vi actual speed (output)

- If there exists external disturbance

v=10*u-5*w, u=1/10*r o v=r-5*w
Assuming desired speed r = 10, and small disturbance w = 1
Actual speed v =5
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Establishment of system model

* Closed-loop control

- ¢: difference between actual speed and desired speed
(error)

- K: coefficient (proportional coefficient)

o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

| w==p- 5
r > K >=> 10 v
Sensor

_____________________________________________________
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Establishment of system model

* Closed-loop control

- ¢: difference between actual speed and desired speed
(error)

- K: coefficient (proportional coefficient)

o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

Sensor ,: /

_____________________________________________________
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Progress: Application >> Concepts >> Case study >»> Feedback system >> Model >> PID Control >> Analysis > Summary

Example 1: manual control system

e Tn this manual control valve
system, which one ‘

corresponds to the T llll

Sensor |

A 4
o
ja.
v

-Process
- Actuator Fluid input ™

- Sensor

- Controller

- Desire output

- Actual output

Fluid output

- Error
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Progress: Application >> Concepts >> Case study >»> Feedback system >> Model >> PID Control >> Analysis > Summary

Example 2: Feedback amplifier

OutputY
R;
R+ R,
Input QOutput
O— s
3 |« * Only considered the DC characteristics

« The AC characteristics are more complicated
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Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> Analysis >> Summary

Example 3: Moon robot

e~ T models the time
delay T in fransmission

of a communication signal

TV display

Control to signal-
transmitting antenna

Control stick

Moon’s
surface

(a)

Transmitted

TV camera

Receiving
antenna

Remote
manipulator

Man's i signal

desired

action -

| . Position of

v

= .
s +1 manipulator

a

Video return signal
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Differential equations for dynamic modeling

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

» Governing equation B B R meic

di L i
¢ Electrical inductance vy - LH; E= %Li2 v3 0 Y Y Y go v,
: . 1dF 1R E
y v e e o oYYy
[,.\ /\.\ Translational spring Ut T E R vy F
‘ ) Inductive storage ¢ w . 3
Wall < k ! Rotational spring L o E= %TT wy oYY 7
fmcuton, b é ’ e
i > = N dQ 1 !
\ l .:. o I“l \ Fluid inertia Py =1I—¢ E= éld mm&,,l
B Mass B ! ¥ M Electrical capaci ] E = 1cuy? L e
| ,‘ M i I { ectrical capactance 1= at - 2 vy vzo_._H_oul
i I — g dv ez P {ul -
| l anslational mass F= ME- E= EMvz vy vy =
-l coastant
(o) d o }—0
G Capacitive storage  { Rotational mass T =22 E= 11,,,22 T _*_.,1 W, =
Boria o) de 2 constant
Horce P!
dpP,
Fluid capacitance Q= C,—d—-"—1 E= %C/Pn’ e —w—{"‘ g}—o P
. . \ Thermal capacitance q= C,-d—: E=C3 1 7, g, -
Mass Damping Spring Force - " " =
—I_,_—I — Bﬂ b EI$ e { Electrical resistance i=pon P = i Uy —AAA~+—0 v,
I~ Translational damper F = buy P = buy? l]
E / pe F vy b "
d 2 y (t) dy (t) Energy dissipators ¢ Rotational damper T = bwy, P = buyy’ r @
b ky(t) = o
2 + + y (t) i r (t) Fluid resistance Q= li’n P = l”u! ko
d t d t Ry Ry Py o~AAA~+—0 P,
\  Thermal resistance q= _]-g 1 ®= ’I“Szl R, ¢
R, R, T, 0=AAN—+—0 T,
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Frequency-domain expressions

d?y()  , dy(®)

M b——+ky(t) =r(t
* Transfer function
- Describing the dynamic relationship of Laplace
the system in the frequency domain transform

Ms?Y(s) + bsY(s) + kY(s) = R(s)

Input/output
relation

Output Y(s) 1
= G(S) = =
Input R(s) Ms?+bs+k
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Block diagram

A practical rotational Battery

speed control system I|

Speed
setting DC

amplifier
The corresponding
block diagram )
(abstraction)
Controller Actuator Process
Y DC Rotatin Actual
ACLUC
speed  =——  Amplifier p———3 — amg ey A
motor disk speed
(voltage) <. 1 a1 . 4
............ ("

Representing a time-domain or frequency -domain (mathematical) model
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Mathematical model of feedback control system

X (S Error

Desired output

>

response

6(5) = GAR)Ga(5)G, (5)

Y(52

r A\
Gc (S);Y Ga (S) Gp (S)
C(MIcr —»| Actuator ¥ Process
/7
H(s)
Sensor |«
Measurement output Feedback

Open-loop gain

Close-loop gain

\ctual
output

Tuning the
close-loop
system
characteristics
by changing the
controller
characteristics
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

PID controller
* A Brief History of PID Control

« 1890's, PID (Proportional - Integral - Derivative) Control,
originally developed in the form of motor governors, which
were manually ad justed

« 1922, the first theory of PID Control was published by
Nicolas Minorsky, who was working for the US Navy

« 1940's, the first papers regarding PID tuning appeared

- there are several hundred different rules for tuning PID controllers
(See Dwyer, 2009)

Nicolas Minorsky
* Nowadays, 97% of regulatory controllers utilize PID (1885- 1570)
a Russian American
feedback control theory
. .. mathematician,
- based on a survey of over eleven thousand controllers in the refining,  engineer and applied
chemicals and pulp and paper industries (see Desborough and Miller, scientist
2002).
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

PID controller

r(t) e(t) Plant; | V(1)
+ Process
A A A
Current L Past . 5 Siope
error || error i b
> -
Time THIF
Bk e =i _§ 4
& Tlncreasing K. i '% % i rorg
s : : ; 2 Tlncreasmg T, i
(=] - © H H
i ; I l
% £ a >
£ ’ > Time
o Time Time
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

e Case 1 »

30 -

- Autonomous car stops at a red light
- At ¢y, light turns green and car starts up-
- And finally reaches desired speed

25

Desired spe
o

- Desired speed is a step function at ¢, st

ST100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

30

1
35

1
40

45 50
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

* Case 1
- Autonomous car stops at a red light
- At t,, light turns green and car starts up - i
- And finally reaches desired speed |

- Consider a proportional control only

5(5) = Ko, KpsO e(t) o(1)

S)= p, p>

5(1) = Kpre(t) r(t) G(s) » Car v(t)
Sensor

O represents the throttle angle
and 6 is the derivative, which represents the change in speed
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

* Case 1
- Consider a proportional control only
G(s) = Kp, Kp>0

6(t) = Kp*e(t)

) O == ”;??T_'/\/v
r(t) 6(s) | Car > (1) .
Sensor 6(6) = Kpett) ->/\/v

Notice the oscillation in velocity, due to an aggressive Kp

ST100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8



Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

* Case 1
- Consider a proportional control only .
6(s) = Kp, Kp>O e
O(t) = Kp*e(t R
(1) = Kpel(t) . e(t) = () — v(t)=P
e(t)  6(1)
(1) 6(s) | Car > (1) 1
Sensor 6() = er(t)g?
v(t) =f9(t) dtg;;-b/

Smaller Kp reduces oscillation, but is more time-consuming
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

 Case 2

- Autonomous car stops at a red light

- Another red light some distance away
- At ty, light turns green and car startsup <,
- And finally stops at the second light st

Desired distance

0 5 15 20 25 30 35 40 45 50
Time

- Desired distance is a step functionat ¢,

A |7 4 Ny

ame’
&o Distance: x

7
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

* Case 2
- If proportional control only

G(s) = Kp, Kp>0 Control system of Case 1
)= . 7 e(t) o)

0(t) = Kp*e(t) o)

- Notice the change in control system

c:j» v(t)

Control system of Case 2

o(t)  v(t)

) © 4

A\ © | 4 e(t)

r(t)

6(s)

Car

> 1/s P x(1)

Distance: x

Sensor
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

* Case 2
- If proportional control only
6(s) = Kp, Kp>0 *€e
0(t) = Kp*e(t) e(t) -~
=r(®) —x(t) -
- On previous experience, 60) =Kpe =W~ |
choose small Kp N

v (t) =j9(zs)dr;§> |
A © 4 h |

x(t) = fv(t) dt -

&O Distance: x

Why is this happening?
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

 Case 2
- Introduce derivative control

e(t) _ 0(t)  v(1)
5(s) = Kp + Kd¥s, Kp KO ) 6(s) || Car | s b x(1)
6(t) = Kp*e(t) + Kd*é(t) -
ensor

- Therefore, proportional-derivative (PD) control

A © 4 \ @ 4

&O Distance: x
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

e Case 2

- Introduce derivative control
G(s) = Kp + Kd*s, Kp,Kd>0 L[t

\\\\\\\\\

6(1) = Kp*e(t) + Kd*e(t) ) _ y—a =

O(t) = Kye(t) + Kqé(t) b "

- Therefore, proportional-
derivative (PD) control

vvvvvvvvv

v(t) = j O(t) dt =

A | 4

|
9 10 1" 12 13 14 15 16 17 18 19 20
40
x(t) = | v(t)dt
:
820
@
o
10

Distance: x

Similarly, oscillation exist
(inevitable), but much smaller
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller
* Case 3

- Car A runs at a constant speed
- Car B starts up to catch up with A |
- Finally two cars drive side by side

- Desired distance is a linear
function

- And what is the control variable
this time?

600

Disired distance
w
o
o

0 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
Time

Velocity: v
—

ame) ame)

(O/%;:GHCBZ X :
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

* Case 3

- If still only consider
proportional control

G(s) = Kp, Kp>0
O (1) = Kp™e(t)

Control system of Case 2

e(t) 0(1)  v(1)
r(t) 6(s) | Car (| 1/s 1 x(1)

Sensor

- Notice this time the control

variable is V€|0Ci1'y (or' Control system of Case 3

throttle angle 6) e(t) 6(t) or v(¥)
r(t) 6(s) | Car (| 1/s - x(1)
Velocn‘ry v Sensor
Do me

&o/%:/ance X :
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

* Case 3
- If still only consider proportional control
G(s) = Kp, Kp>0

v(t) = Kp*e(t)

Control system of Case 3

e(t) O(t) or v(t)
r(t) G(s) Fb Car )—b 1/s x(1)

Sensor

- On previous experience, choose small Kp

ame) ame)

‘© ‘0 o
iIstance: x
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

* Case 3

- If still only consider J
proportional control i

G(s) = Kp, Kp>0
v(t) = Kp*e(t)
- On previous experience,
choose small Kp

- Cannot catch up

- Final v=Kp*e(t) and e(*) o °

maintains

Velocity: v i
—> T s« s v v v e w

ame) ame)

(O/%;:ance: X :
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Progress: Application >> Concepts >> Case study > Feedback system >> Model >> PID Control >> Analysis >> Summary

Composition of PID controller

* Case 3
- Introduce integral control
G(s) = Kp + Ki*(1/s), Kp,Ki>0
v (1) = Kp*e(t) + Ki*[ e(t) dt

- Therefore, proportional-
integral (PI) control

v(t) = Kye(t) + K; j e(t) dt *D

Velocity: v

—_—
ame Ao
[ |

‘0 o 0 0>
iIstance: x

e(t) = r(t) — x(¢t) —>

000000000000

x(t) = j

Oscillation inevitable, and integral part
increases overshot

lllllllll

0
000000000000
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Progress: Application >> Concepts >> Case study >» Feedback system >> Model >> PID Control >> Analysis >> Summary

Mathematical analysis of PID controller
* P Control

* Proportional control (P): accounts for present values of the error

- U —— control signal
- K,—— proportional gain "
- e ——error signal 1 r---
0 | t
to
* In the Laplace domain o0
T
0 | to t
Step response for P control
* Pros&Cons * Proportional control is always present,
- Rapid response to frack the error signal  gjther by itself, or allied with derivative
- Steady-state error and/or integral control

- Prone to be unstable for large K,
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Progress: Application >> Concepts >> Case study >» Feedback system >> Model >> PID Control >> Analysis >> Summary

Mathematical analysis of PID controller

« T Control

* Integral control (I): accounts for past values of the error

- U —— control signal "
- Ki——integral gain b
- e —— error signal 0 t
* In the Laplace domain .
u(t
/,%_
0 i T t
toI‘—T‘_’i T, = K, /K;

Step response for | control

* Pros&Cons
- Eliminates the steady-state error that occurs with pure P control

- Prone to cause the present value to overshoot the setpoint (responds
to accumulated errors from the past)

ST100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8 (45/54)



Progress: Application >> Concepts >> Case study >» Feedback system >> Model >> PID Control >> Analysis >> Summary

Mathematical analysis of PID controller
D Control

* Derivative control (D): accounts for possible future trends of the error

- U —— control signal
- K4q—— derivative gain

. e(t)
- e —— error signal

* In the Laplace domain 0

-

0 t
to
Step response for D control

* Pros&Cons

- Predicts system behavior and thus improves settling time/transient
response and stability of the system

- Helps reduce overshoot, but amplifies noise (derivative kick)

- Seldom used in practice, 80% of the employed PID controllers have
the D part switched-off (see Ang et al., 2005)
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Progress: Application >> Concepts >> Case study >» Feedback system >> Model >> PID Control >> Analysis >> Summary

Mathematical analysis of PID controller
« PID Control

* Proportional integral derivative control (PID): a combination of P, I and D control

e(t)

0l t

* In the Laplace domain y
\Agﬂé_j

to =—T—

Step response for PID control
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Progress: Application >> Concepts >> Case study >» Feedback system >> Model >> PID Control >> Analysis >> Summary

Mathematical analysis of PID controller

 Steady-state error

Y
R(s) P? E(s) »  PID controller [G¢(s)] [——® Plant [Gy(s)] (s >

Sensor

Input signal: unit step signal
Close-loop gain for PID

Plant: 2nd order system
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Progress: Application >> Concepts >> Case study >» Feedback system >> Model >> PID Control >> Analysis >> Summary

Mathematical analysis of PID controller

 Steady-state error

P control y()
1 /\/\/éteady-state error

V t

* Final-value theorem

- Steady-state error
always occurs;

- Larger K, makes steady
state error goes to zero

(49/54)
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Progress: Application >> Concepts >> Case study >» Feedback system >> Model >> PID Control >> Analysis >> Summary

Mathematical analysis of PID controller

» Steady-state error

« PD control

- Steady-state error
remains

- D control does not track
error, only affect the
rate of change

* Final-value theorem
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Mathematical analysis of PID controller

« Steady-state error

* PI control

]Qv———

- Steady-state error is
zero for a step reference,
even for small K; (just
takes longer to reach
steady state).

* Final-value theorem
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PID controller

« Steady-state error

Kp=0 Ki=0 Kd=0

« PID control 16

* Final-value theorem

Amplitude
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Summary of PID controller

Plant; |V(t)
Pr%?:eés >

PID gain Settling-time Steady-state error

Increasing Kp Increases Minimal impact Decreases
Increasing Ki  Increases Increases Zero error
Increasing Kd Decreases Decreases No impact
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Inverted pendulum example in Matlab
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Key in the command:
>> openExample('simulink_general/penddemoExample’)
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