SI100B Introduction to Information Science and Technology (Part 3: Electrical Engineering)

Lecture #8 Dynamic Systems and Control

Instructor: Haoyu Wang(王浩宇) Apr 28th, 2023

The Theme Story

(Figures from Internet)

Study Purpose of Lecture #8

- 哲学三问
 - Who are you?
 - Where are you from?
 - Where are you going?

To answer those questions throughout your life

(Figures from Internet)

- In this lecture, we ask
 - What is control engineering?
 - What is **feedback** control system?
 - How does PID controller work?

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Lecture Outline

- Control and connectivity towards Industry 4.0
- Mathematical model of a dynamic system
- Feedback control system
 - Block diagram
 - Examples
- Controller design
 - Proportional control
 - Integral control
 - Derivative control

Application of Control Systems

- Autonomous robots
- Autonomous cars
- Quadcopters
- Self-balance robots
- Other more applications

(https://www.youtube.com/watch?v=fRj34o4hN4I)

Application of Control Systems

- Autonomous robots
- Autonomous cars
- Quadcopters
- Self-balance robot
- Other more applications

(https://www.youtube.com/watch?v=tlThdr3O5Qo)

Application of Control Systems

- Autonomous robots
- Autonomous cars
- Quadcopters
- Other more applications

(https://www.youtube.com/watch?v=w2itwFJCgFQ)

Definition of Control Systems

- Other more applications
 - Automatic assembly line
 - Space technology
 - Power systems
 - Smart transportation systems
 - Missile launching systems
- What is a control system?

A control system is an interconnection of components forming a **system** configuration that will provide a desired system **response**. ——Richard C. Dorf & Robert H. Bishop, *Modern control systems*

Composition of Control Systems

- Linear system
 - Cause-effect relationship for the components
 - Block diagram

Composition of Control Systems

- Linear system
 - Cause-effect relationship for the components
 - Block diagram

An open-loop control system uses a controller and an actuator to obtain the desired response, without using feedback.

Composition of Control Systems

Closed-loop system

- Compare actual output with desire output

Composition of Control Systems

- Closed-loop system
 - Compare actual output with desire output

-Notice the difference: error based controller

Composition of Control Systems

Closed-loop system

- Compare actual output with desire output

- An actual system also faced with disturbance and noise

Establishment of system model

• Start from a naïve example

- Consider a autonomous car start up and maintain a constant speed
- Assuming:

<u>Control variable</u> 1° throttle angle cause a 10km/h change in speed 1° road grade cause a -5km/h change in speed <u>Disturbance</u>

Establishment of system model

- Start from a naïve example
 - Consider a autonomous car starts up and maintains a constant speed
 - Assuming:

Establishment of system model

- Start from a naïve example
 - Consider a autonomous car start up and maintain a constant speed
 - Assuming:

Establishment of system model

1/10

Controller

10

Actuator

- Open-loop control
 - Parameters definition
 - -r: desired speed (reference)
 - u: throttle angle (control variable)
 - w: road grade (disturbance)
 - v: actual speed (output)

- If there is no external disturbance (w=0)

v = 10 * u, u = 1/10 * r \rightarrow v = rAssuming desired speed r = 10, Actual speed v = 10

Establishment of system model

1/10

10

5

- Open-loop control
 - Parameters definition
 - -r: desired speed (reference)
 - u: throttle angle (control variable)
 - -w: road grade (disturbance)
 - v: actual speed (output)

- If there exists external disturbance

v = 10 * u - 5 * w, $u = 1/10 * r \longrightarrow v = r - 5 * w$ Assuming desired speed r = 10, and small disturbance w = 1Actual speed v = 5

Establishment of system model

Closed-loop control

- c: difference between actual speed and desired speed (error)
- K: coefficient (proportional coefficient)

Establishment of system model

Closed-loop control

- c: difference between actual speed and desired speed (error)
- K: coefficient (proportional coefficient)

Example 1: manual control system

- In this manual control value system, which one corresponds to the
 - -Process
 - Actuator
 - Sensor
 - Controller
 - Desire output
 - Actual output
 - Error

Example 2: Feedback amplifier

- Only considered the DC characteristics
- The AC characteristics are more complicated

Example 3: Moon robot

 e^{-sT} models the time delay T in transmission of a communication signal

Differential equations for dynamic modeling

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

Type of Element	Physical Element	Governing Equation	Energy E or Power 9	Symbol
Inductive storage	Electrical inductance	$v_{21} = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$	v2 0
	Translational spring	$v_{21} = \frac{1}{k} \frac{dF}{dt}$	$E = \frac{1}{2} \frac{F^2}{k}$	v2 erret v1
	Rotational spring	$\omega_{21} = \frac{1}{k} \frac{dT}{dt}$	$E = \frac{1}{2} \frac{T^2}{k}$	ω₂ o mos
	Fluid inertia	$P_{21} = I \frac{dQ}{dt}$	$E = \frac{1}{2}IQ^2$	P2 0 1 0 1
Capacitive storage	Electrical capacitance	$i = C \frac{dv_{21}}{dt}$	$E = \frac{1}{2}Cv_{21}^2$	
	Translational mass	$F = M \frac{dv_2}{dt}$	$E=\frac{1}{2}Mv_2^2$	$F \rightarrow o_{v_2} M = o_{v_1}$
	Rotational mass	$T = J \frac{d\omega_2}{dt}$	$E=\frac{1}{2}J\omega_2^2$	$T \xrightarrow{\omega_2} \overbrace{J}^{\omega_1}_{\omega_1}$
	Fluid capacitance	$Q = C_f \frac{dP_{21}}{dt}$	$E = \frac{1}{2} C_f P_{21}{}^2$	$Q \xrightarrow{P_2} C_f $
	Thermal capacitance	$q = C_t \frac{d\mathcal{T}_2}{dt}$	$E=C_{l}\mathcal{I}_{2}$	$q \xrightarrow{q} C_{l} \underbrace{\mathfrak{T}_{2}}_{\mathfrak{T}_{2}} $
Energy dissipators	Electrical resistance	$i = \frac{1}{R}v_{21}$	$\mathcal{P} = \frac{1}{R} v_{21}^2$	
	Translational damper	$F = bv_{21}$	$\mathcal{P} = b v_{21}^2$	$F \xrightarrow{v_2} b$
	Rotational damper	$T = b\omega_{21}$	$\mathcal{P} = b\omega_{21}^2$	$T \xrightarrow{\omega_2} b$
	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}^2$	$P_2 \sim \stackrel{R_f}{\longrightarrow} Q \sim P_2 \sim P_2 \sim P_1 \sim P_2 \sim P_$
	Thermal resistance	$q = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{P}=\frac{1}{R_t}\mathcal{T}_{21}$	$\pi_2 \sim \stackrel{R_i}{\longrightarrow} \stackrel{q}{\longrightarrow} \circ$

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Frequency-domain expressions

$$M\frac{d^2y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = r(t)$$

Block diagram

Mathematical model of feedback control system

Tuning the close-loop system characteristics by changing the controller characteristics

Open-loop gain

Close-loop gain

PID controller

- A Brief History of PID Control
- 1890's, PID (Proportional Integral Derivative) Control, originally developed in the form of motor governors, which were manually adjusted
- 1922, the first theory of PID Control was published by Nicolas Minorsky, who was working for the US Navy
- 1940's, the first papers regarding PID tuning appeared
 - there are several hundred different rules for tuning PID controllers (See Dwyer, 2009)
- Nowadays, 97% of regulatory controllers utilize PID feedback
 - based on a survey of over eleven thousand controllers in the refining, chemicals and pulp and paper industries (see Desborough and Miller, 2002).

Nicolas Minorsky (1885-1970) a Russian American control theory mathematician, engineer and applied scientist

PID controller

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Composition of PID controller

Case 1

- Desired speed is a step function at t_0

Composition of PID controller

• Case 1

Velocity: v

- Autonomous car stops at a red light
- At t_0 , light turns green and car starts up $\frac{3}{2}$
- And finally reaches desired speed
- Consider a proportional control only

 θ represents the throttle angle

and $\dot{\theta}$ is the derivative, which represents the change in speed

Composition of PID controller

• Case 1

- Consider a proportional control only

Notice the oscillation in velocity, due to an aggressive Kp

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Composition of PID controller

- Consider a proportional control only

Smaller Kp reduces oscillation, but is more time-consuming

(33/54)

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Composition of PID controller

• Case 2

- Autonomous car stops at a red light
- Another red light some distance away
- At t_0 , light turns green and car starts up
- And finally stops at the second light

- Desired distance is a step function at t_0

 t_0

Composition of PID controller

Composition of PID controller

- Case 2
 - If proportional control only
 G(s) = Kp, Kp>0
 - $\dot{\theta}(t) = Kp^*e(t)$
 - On previous experience, choose small Kp

Why is this happening?

Composition of PID controller

• Case 2

- Introduce derivative control

 $G(s) = Kp + Kd^{*}s, Kp, Kd>0$ $\dot{\theta}(t) = Kp^{*}e(t) + Kd^{*}\dot{e}(t)$

- Therefore, proportional-derivative (PD) control

Composition of PID controller

Composition of PID controller

• Case 3

- Car A runs at a constant speed
- Car B starts up to catch up with A
- Finally two cars drive side by side
- Desired distance is a linear function
- And what is the control variable this time?

Composition of PID controller

- Case 3
 - If still only consider proportional control
 - G(s) = Kp, Kp>0 $\Theta(t) = Kp*e(t)$

Control system of Case 2

Notice this time the control variable is velocity (or throttle angle θ)

Control system of Case 3

Composition of PID controller

• Case 3

- If still only consider proportional control

- On previous experience, choose small Kp

Composition of PID controller

- Case 3
 - If still only consider proportional control
 - G(s) = Kp, Kp>0 v(t) = Kp*e(t)
 - On previous experience, choose small Kp
 - Cannot catch up
 - Final v=Kp*e(t) and e(t) maintains

Composition of PID controller

Oscillation inevitable, and integral part increases overshot

Mathematical analysis of PID controller

• P Control

- Proportional control (P): accounts for present values of the error
 - U —— control signal
 - K_p—— proportional gain
 - e —— error signal
- In the Laplace domain

Step response for P control

- Pros&Cons
 - Rapid response to track the error signal
 - Steady-state error
 - Prone to be unstable for large K_p
- Proportional control is always present, either by itself, or allied with derivative and/or integral control

Mathematical analysis of PID controller

- I Control
- Integral control (I): accounts for past values of the error
 - U —— control signal
 - K_i—— integral gain
 - e —— error signal
- In the Laplace domain

- Pros&Cons
 - Eliminates the steady-state error that occurs with pure P control
 - Prone to cause the present value to overshoot the setpoint (responds to accumulated errors from the past)

Mathematical analysis of PID controller

• D Control

• Derivative control (D): accounts for possible future trends of the error

- K_d —— derivative gain
- e —— error signal

• In the Laplace domain

- Pros&Cons
 - Predicts system behavior and thus improves settling time/transient response and stability of the system
 - Helps reduce overshoot, but amplifies noise (derivative kick)
 - Seldom used in practice, 80% of the employed PID controllers have the D part switched-off (see Ang et al., 2005)

Mathematical analysis of PID controller

PID Control

• Proportional integral derivative control (PID): a combination of P, I and D control

• In the Laplace domain

Progress: Application >>> Concepts >>> Case study >>> Feedback system >>> Model >>> PID Control >>> Analysis >>> Summary

Mathematical analysis of PID controller

• Steady-state error

Input signal: unit step signal

Close-loop gain for PID

Plant: 2nd order system

Mathematical analysis of PID controller

- Steady-state error
- P control

- Steady-state error always occurs;
- Larger K_p makes steady state error goes to zero

Mathematical analysis of PID controller

• Steady-state error

PD control

Final-value theorem

- Steady-state error remains
- D control does not track error, only affect the rate of change

Mathematical analysis of PID controller

Steady-state error

PI control

Final-value theorem

 Steady-state error is zero for a step reference, even for small K_i (just takes longer to reach steady state).

Progress: Application >> Concepts >> Case study >> Feedback system >> Model >> PID Control >> <u>Analysis</u> >> Summary

PID controller

• Steady-state error

PID control

Final-value theorem

Summary of PID controller

PID gain	Overshoot	Settling-time	Steady-state error
Increasing Kp	Increases	Minimal impact	Decreases
Increasing Ki	Increases	Increases	Zero error
Increasing Kd	Decreases	Decreases	No impact

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Inverted pendulum example in Matlab

Key in the command:

>> openExample('simulink_general/penddemoExample')

