SI100B Introduction to Information Science and Technology (Part 3: Electrical Engineering)

Lecture #8 Dynamic Systems and Control

Instructor: Haoyu Wang(王浩宇) Apr 28th, 2023

The Theme Story

(Figures from Internet)

Study Purpose of Lecture #8

- 哲学三问
	- − Who are you?
	- − Where are you from?
	- − Where are you going?

To answer those questions throughout your life

(Figures from Internet)

- In this lecture, we ask
	- − What is **control** engineering?
	- − What is **feedback** control system?
	- − How does **PID** controller work?

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Lecture Outline

- Control and connectivity towards Industry 4.0
- Mathematical model of a dynamic system
- Feedback control system
	- − Block diagram
	- − Examples
- Controller design
	- − Proportional control
	- − Integral control
	- − Derivative control

Application of Control Systems

- Autonomous robots
- Autonomous cars
- Quadcopters
- Self-balance robots
- Other more applications

(https://www.youtube.com/watch?v=fRj34o4hN4I)

Application of Control Systems

- Autonomous robots
- Autonomous cars
- Quadcopters
- Self-balance robot
- Other more applications

(https://www.youtube.com/watch?v=tlThdr3O5Qo)

Application of Control Systems

- Autonomous robots
- Autonomous cars
- Quadcopters
- Other more applications

(https://www.youtube.com/watch?v=w2itwFJCgFQ)

Definition of Control Systems

- Other more applications
	- − Automatic assembly line
	- − Space technology
	- − Power systems

− …

- − Smart transportation systems
- − Missile launching systems
- What is a control system?

A control system is an interconnection of components forming a **system** configuration that will provide a desired system **response**. ——Richard C. Dorf & Robert H. Bishop, *Modern control systems*

Composition of Control Systems

- Linear system
	- − Cause-effect relationship for the components
	- − Block diagram

Composition of Control Systems

- Linear system
	- − Cause-effect relationship for the components
	- − Block diagram

An open-loop control system uses a controller and an actuator to obtain the desired response, without using feedback.

Composition of Control Systems

• Closed-loop system

− Compare actual output with desire output

Composition of Control Systems

- Closed-loop system
	- − Compare actual output with desire output

− Notice the difference: error based controller

Composition of Control Systems

• Closed-loop system

− Compare actual output with desire output

− An actual system also faced with disturbance and noise

Establishment of system model

• Start from a naïve example

- − Consider a autonomous car start up and maintain a constant speed
- − Assuming:

1° throttle angle cause a 10km/h change in speed 1° road grade cause a -5km/h change in speed Control variable Disturbance

Establishment of system model

- Start from a naïve example
	- − Consider a autonomous car starts up and maintains a constant speed
	- − Assuming:

Establishment of system model

- Start from a naïve example
	- − Consider a autonomous car start up and maintain a constant speed
	- − Assuming:

Establishment of system model

- Open-loop control
	- − Parameters definition
	- − r: desired speed (reference)
- Controller Actuator

 $10 \rightarrow$ v

 $1/10$

- − u: throttle angle (control variable)
- − w: road grade (disturbance)
- − v: actual speed (output)

− If there is no external disturbance (w=0)

 $v = 10 * u$, $u = 1/10 * r$ v = r Assuming desired speed $r = 10$, Actual speed $v = 10$ ☺

Establishment of system model

 $1/10$

 5

10

-

- Open-loop control
	- − Parameters definition
	- − r: desired speed (reference)
	- − u: throttle angle (control variable)
	- − w: road grade (disturbance)
	- − v: actual speed (output)
	- − If there exists external disturbance

 $v = 10 * u - 5 * w$, $u = 1/10 * r$ $v = r - 5 * w$ Assuming desired speed $r = 10$, and small disturbance $w = 1$ Actual speed $v = 5$ 3

Establishment of system model

• Closed-loop control

- − ε: difference between actual speed and desired speed (error)
- − K: coefficient (proportional coefficient)

Establishment of system model

• Closed-loop control

- − ε: difference between actual speed and desired speed (error)
- − K: coefficient (proportional coefficient)

Example 1: manual control system

- In this manual control valve system, which one **Desired** output response corresponds to the
	- − Process
	- − Actuator
	- − Sensor
	- − Controller
	- − Desire output
	- − Actual output
	- − Error

Example 2: Feedback amplifier

- Only considered the DC characteristics
- The AC characteristics are more complicated

Example 3: Moon robot

 e^{-sT} models the time delay T in transmission of a communication signal

Differential equations for dynamic modeling

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Frequency-domain expressions

$$
M\frac{d^2y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = r(t)
$$

Block diagram

Mathematical model of feedback control system

Tuning the close-loop system characteristics by changing the controller characteristics

Open-loop gain

Close-loop gain

PID controller

- A Brief History of PID Control
- 1890's, PID (Proportional Integral Derivative) Control, originally developed in the form of motor governors, which were manually adjusted
- 1922, the first theory of PID Control was published by Nicolas Minorsky, who was working for the US Navy
- 1940's, the first papers regarding PID tuning appeared
	- − there are several hundred different rules for tuning PID controllers (See Dwyer, 2009)
- Nowadays, **97%** of regulatory controllers utilize PID feedback
	- based on a survey of over eleven thousand controllers in the refining, chemicals and pulp and paper industries (see Desborough and Miller, 2002).

Nicolas Minorsky (1885- 1970) a Russian American control theory mathematician, engineer and applied scientist

PID controller

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Composition of PID controller

• Case 1

- − Autonomous car stops at a red light
- − At $t_{\rm 0}$, light turns green and car starts up
- − And finally reaches desired speed
- $-$ Desired speed is a step function at t_0

Composition of PID controller

• Case 1

- − Autonomous car stops at a red light
- $-$ At t_0 , light turns green and car starts up $\frac{1}{2}$
- And finally reaches desired speed
- − And finally reaches desired speed
- − Consider a proportional control only

Velocity: v

θ represents the throttle angle

and $\dot{\theta}$ is the derivative, which represents the change in speed

Composition of PID controller

• Case 1

− Consider a proportional control only

Notice the oscillation in velocity, due to an aggressive Kp

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Composition of PID controller

• Case 1

− Consider a proportional control only

Smaller Kp reduces oscillation, but is more time-consuming

(33/54)

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Composition of PID controller

• Case 2

- − Autonomous car stops at a red light
- − Another red light some distance away
- $-$ At t_0 , light turns green and car starts up
- − And finally stops at the second light

 $-$ Desired distance is a step function at t_0

 t_{0}

Composition of PID controller

• Case 2 − If proportional control only $G(s) = Kp$, Kp>O $\dot{\theta}$ (†) = Kp*e(†) − Notice the change in control system Distance: x $r(t) \rightarrow c(s)$ G(s) Car v(t) Sensor $e(t)$ $\theta(t)$ Control system of Case 1 $r(t) \rightarrow c(s)$ G(s) \rightarrow Car \rightarrow 1/s \rightarrow x(t) Sensor $e(t)$ $\theta(t)$ $1/s$ v(t) Control system of Case 2

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Composition of PID controller

- Case 2
	- − If proportional control only $G(s) = Kp$, $Kp > 0$ $\dot{\theta}$ (†) = Kp*e(†)
	- − On previous experience, choose small Kp

Why is this happening?

Composition of PID controller

- Case 2
	- − Introduce derivative control
	- $G(s)$ = Kp + Kd*s, Kp, Kd>0 $\dot{\theta}$ (t) = Kp*e(t) + Kd* \dot{e} (t)

− Therefore, proportional-derivative (PD) control

Composition of PID controller

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Composition of PID controller

• Case 3

- − Car A runs at a constant speed
- − Car B starts up to catch up with A
- − Finally two cars drive side by side
- − Desired distance is a linear function
- − And what is the control variable this time?

(39/54)

Composition of PID controller

- Case 3
	- − If still only consider proportional control

 $G(s) = Kp$, $Kp > 0$ θ (t) = Kp*e(t)

Control system of Case 2

− Notice this time the control variable is velocity (or throttle angle θ)

Composition of PID controller

• Case 3

− If still only consider proportional control

− On previous experience, choose small Kp

Composition of PID controller

- Case 3
	- − If still only consider proportional control
		- $G(s) = Kp$, $Kp > 0$ $v(t) = Kp*e(t)$
	- − On previous experience, choose small Kp
	- − Cannot catch up
	- − Final v=Kp*e(t) and e(t) maintains

Composition of PID controller

Distance: x

Oscillation inevitable, and integral part increases overshot

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Mathematical analysis of PID controller

• P Control

- Proportional control (P): accounts for present values of the error
	- − U —— control signal
	- − K_p—— proportional gain
	- − e —— error signal
- In the Laplace domain

Step response for P control

(44/54)

- Pros&Cons
	- Rapid response to track the error signal
	- − Steady-state error
	- Prone to be unstable for large K_p

• Proportional control is always present, either by itself, or allied with derivative and/or integral control

Mathematical analysis of PID controller

- I Control
- Integral control (I): accounts for past values of the error
	- − U —— control signal
	- − Ki—— integral gain
	- − e —— error signal
- In the Laplace domain

- Pros&Cons
	- − Eliminates the steady-state error that occurs with pure P control
	- Prone to cause the present value to overshoot the setpoint (responds to accumulated errors from the past)

Mathematical analysis of PID controller

- D Control
- Derivative control (D): accounts for possible future trends of the error
	- − U —— control signal
	- − K_d—— derivative gain
	- − e —— error signal

• In the Laplace domain

- Pros&Cons
	- Predicts system behavior and thus improves settling time/transient response and stability of the system
	- − Helps reduce overshoot, but amplifies noise (derivative kick)
	- − Seldom used in practice, 80% of the employed PID controllers have the D part switched-off (see Ang et al., 2005)

Mathematical analysis of PID controller

• PID Control

• Proportional integral derivative control (PID): a combination of P, I and D control

In the Laplace domain

Mathematical analysis of PID controller

• Steady-state error

Input signal: unit step signal

Close-loop gain for PID

Plant: 2nd order system

Mathematical analysis of PID controller

- Steady-state error
- P control

- − Steady-state error always occurs;
- Larger K_p makes steady state error goes to zero

Mathematical analysis of PID controller

• Steady-state error

• PD control

• Final-value theorem

- − Steady-state error remains
- D control does not track error, only affect the rate of change

Mathematical analysis of PID controller

• Steady-state error

• PI control

• Final-value theorem

− Steady-state error is zero for a step reference, even for small K_i(just takes longer to reach steady state).

PID controller

• Steady-state error

• PID control

• Final-value theorem

Summary of PID controller

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #8

Inverted pendulum example in Matlab

Key in the command:

>> openExample('simulink_general/penddemoExample')

